Microelectromagnets for the manipulation of biological systems

نویسندگان

  • H. Lee
  • A. M. Purdon
  • R. M. Westervelt
چکیده

Microelectromagnet devices, a ring trap and a matrix, were developed for the microscopic control of biological systems. The ring trap is a circular Au wire with an insulator on top. The matrix has two arrays of straight Au wires, one array perpendicular to the other, that are separated and topped by insulating layers. Microelectromagnets can produce strong magnetic fields to stably manipulate magnetically tagged biological systems in a fluid. Moreover, by controlling the currents flowing through the wires, a microelectromagnet matrix can move a peak in the magnetic field magnitude continuously over the surface of the device, generate multiple peaks simultaneously and control them independently. These capabilities of a matrix can be used to trap, continuously transport, assemble, separate and sort biological samples on micrometer length scales. Combining microelectromagnets with microfluidic systems, chip-based experimental systems can be realized for novel applications in biological and biomedical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation

Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...

متن کامل

Sensitivity Analysis of the Critical Conditions of AFM-Based Biomanipulation of Cylindrical Biological Particles in Various Biological Mediums by Means of the Sobol Method

The sensitivity analysis of atomic force microscope (AFM) based manipulation of gold spherical nanoparticles in air medium has been carried out in previous research works. In the AFM-based manipulations conducted in various biological liquid mediums, the new environmental parameters associated with these biological fluids also affect the dynamics of the manipulation process. Therefore in this r...

متن کامل

Gold nano-smolder for biological tissue manipulation

Thanks to their unique optical and electromagnetic properties, noble-metal nanoparticles are proven very useful in many scientific fields, from nanotechnology to biology, including detection of cancer cells. Irradiated gold nanoparticles, as a nano-smolder could be widely used in biomedical contexts such as tumor therapy. Laser destruction of a cancerous tissue depends on thermal and physical p...

متن کامل

Modelling of Cylindrical Contact Theories ‎of Hertz and JKR for the Manipulation of ‎Biological Micro/Nanoparticles

   This paper deals with the development and modeling of cylindrical contact theories and also the simulation of contact forces to be applied in the manipulation of various biological micro/nanoparticles by means of the AFM. First, the simulation of contact forces in four environments has been carried out, which are the most commonly used fluid in biomanipulation. Then, the spherical and cy...

متن کامل

Modeling and Simulation of Spherical and ‎Cylindrical Contact Theories for Using in ‎the Biological Nanoparticles Manipulation

The low Young's modulus of biological particles results in their large deformation against the AFM probe forces; therefore, it is necessary to study the contact mechanics of bioparticles in order to predict their mechanical behaviors. This paper specifically deals with the contact mechanics of DNA nanoparticles with spherical and cylindrical shapes during manipulation. In previous studies, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004